Closedness Type Regularity Conditions in Convex Optimization and Beyond

نویسنده

  • Sorin-Mihai Grad
چکیده

The closedness type regularity conditions have proven during the last decade to be viable alternatives to their more restrictive interiority type counterparts, in both convex optimization and different areas where it was successfully applied. In this review article we deand reconstruct some closedness type regularity conditions formulated by means of epigraphs and subdifferentials, respectively, for general optimization problems in order to stress that they arise naturally when dealing with such problems. The results are then specialized for constrained and unconstrained convex optimization problems. We also hint toward other classes of optimization problems where closedness type regularity conditions were successfully employed and discuss other possible applications of them.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ε - optimality conditions for composed convex optimization problems

The aim of the present paper is to provide a formula for the ε subdifferential of f +g ◦h different from the ones which can be found in the existent literature. Further we equivalently characterize this formula by using a so-called closedness type regularity condition expressed by means of the epigraphs of the conjugates of the functions involved. Even more, using the ε subdifferential formula ...

متن کامل

Lower semicontinuous type regularity conditions for subdifferential calculus

We give a lower semicontinuous type regularity condition and a closedness type one which turn out to be necessary and sufficient for the fulfillment of two different formulae involving the εsubdifferential of a perturbation function, respectively. These regularity conditions prove to be sufficient also for having formulae for the classical subdifferential of a perturbation function. Some recent...

متن کامل

On Abrams’ theorem

Abrams’ theorem describes a necessary and sufficient condition for the closedness of a linear image of an arbitrary set. Closedness conditions of this type play an important role in the theory of duality in convex programming. In this paper we present generalizations of Abrams’ theorem, as well as Abrams-type theorems characterizing other properties (such as relatively openness or polyhedrality...

متن کامل

On the Closedness of the Linear Image of a Closed Convex Cone

• unify, and generalize seemingly disparate, classical sufficient conditions: polyhedrality of the cone, and “Slater” type conditions; • are necessary and sufficient, when the dual cone belongs to a class, that we call nice cones. Nice cones subsume all cones amenable to treatment by efficient optimization algorithms: for instance, polyhedral, semidefinite, and p-cones. • provide similarly attr...

متن کامل

On Closedness Conditions, Strong Separation, and Convex Duality

In the paper, we describe various applications of the closedness and duality theorems of [7] and [8]. First, the strong separability of a polyhedron and a linear image of a convex set is characterized. Then, it is shown how stability conditions (known from the generalized Fenchel-Rockafellar duality theory) can be reformulated as closedness conditions. Finally, we present a generalized Lagrange...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016